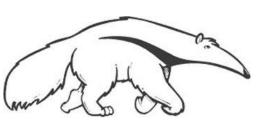
+

Machine Learning and Data Mining

Collaborative Filtering & Recommender Systems

Kalev Kask



Recommender systems

Automated recommendations

- Inputs
 - User information
 - Situation context, demographics, preferences, past ratings
 - Items
 - Item characteristics, or nothing at all
- Output
 - Relevance score, predicted rating, or ranking

Recommender systems: examples

Your Amazon.com

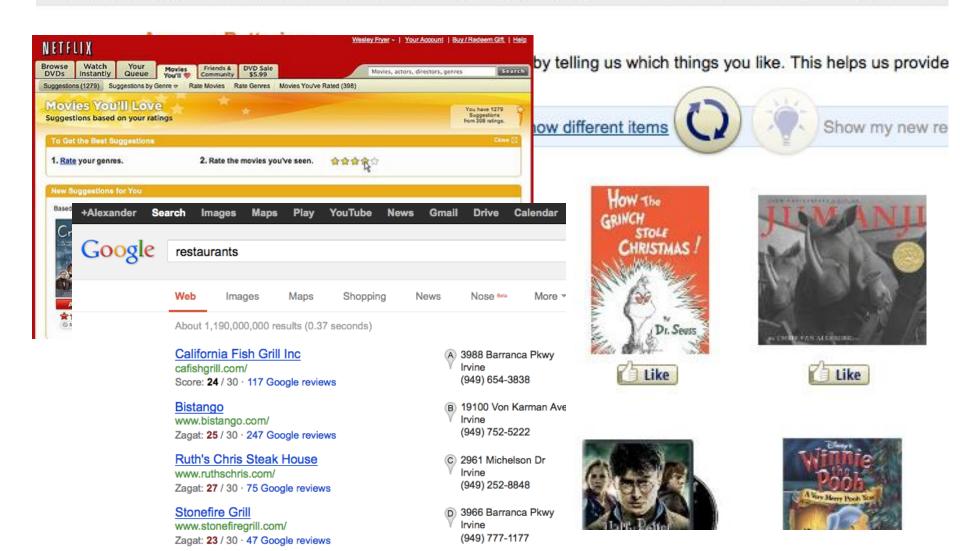
Your Browsing History

Recommended For You

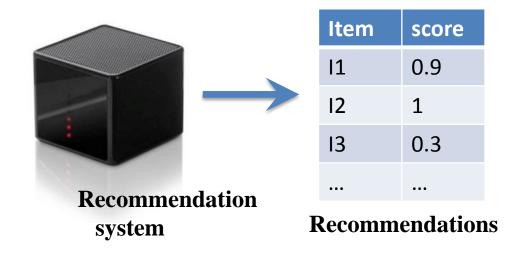
Amazon Betterizer

Improve Your Recommendations

Your

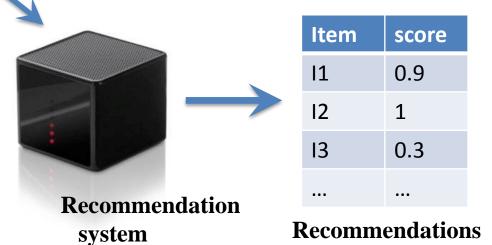


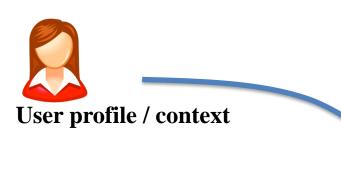
Recommender systems reduce information overload by estimating relevance



Personalized recommendations

User profile / context





Content-based:

"Show me more of the same things that I've liked"

Recommendation system

Item	score
11	0.9
12	1
13	0.3
	•••

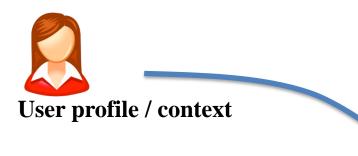
Recommendations

Actors

Genre

Title

Product / item features



Knowledge-based:
"Tell me what fits based on my needs"

Recommendation

system

l1	0.9
12	1
13	0.3

score

Item

Product / item features

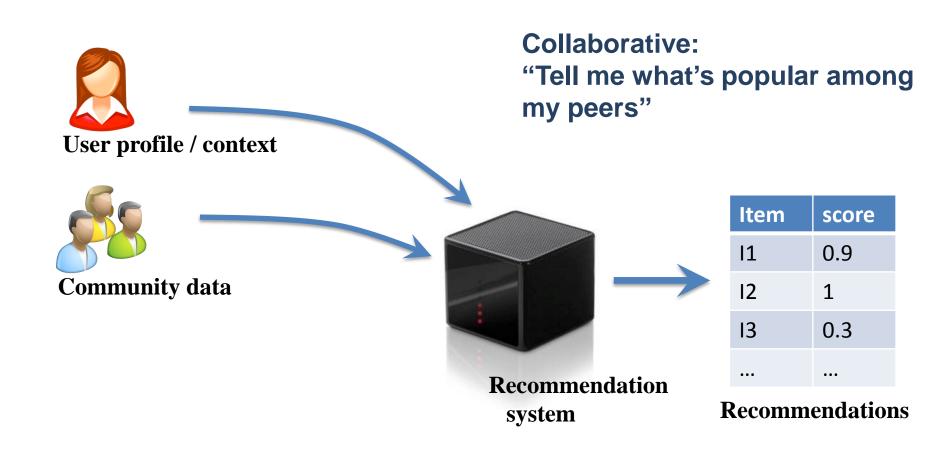
Actors

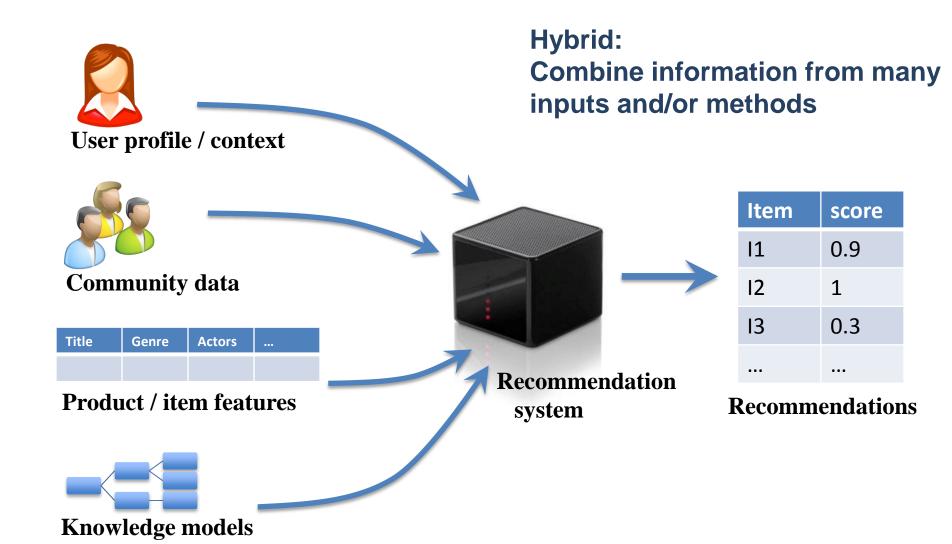
Knowledge models

Genre

Title

Recommendations





Measuring success

- Prediction perspective
 - Predict to what degree users like the item
 - Most common evaluation for research
 - Regression vs. "top-K" ranking, etc.
- Interaction perspective
 - Promote positive "feeling" in users ("satisfaction")
 - Educate about the products
 - Persuade users, provide explanations
- "Conversion" perspective
 - Commercial success
 - Increase "hit", "click-through" rates
 - Optimize sales and profits

Why are recommenders important?

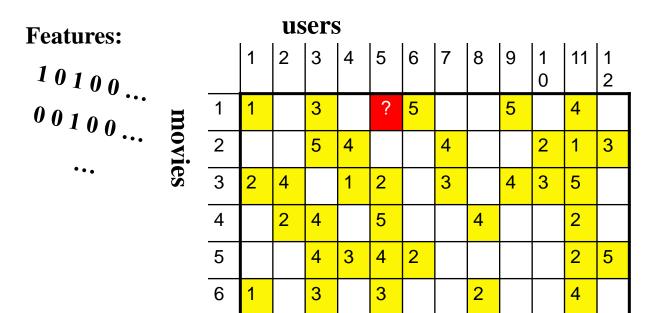
- The "long tail" of product appeal
 - A few items are very popular
 - Most items are popular only with a few people
- Goal: recommend not-widely known items that the user might like!

		1	2	3	4	5	6	7	8	9	1 0	1	1 2
	1	1		3		?	5			5		4	
mo	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5

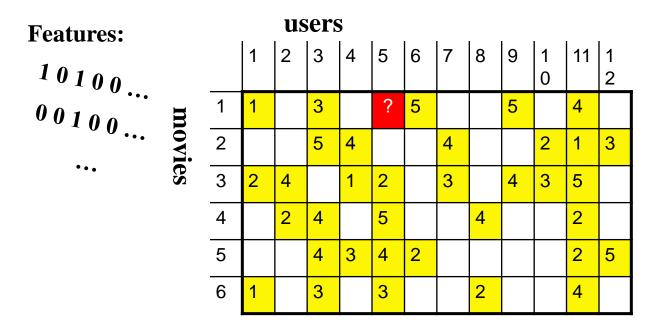
3

users

- Simple approach: standard regression
 - Use "user features" u~, "item features" i~
 - Train $f(u\sim, i\sim) \approx r_{iu}$
 - Learn "users with my features like items with these features"
- Extreme case: per-user model / per-item model
- Issues: needs lots of side information!



- Example: nearest neighbor methods
 - Which data are "similar"?
- Nearby items? (based on...)

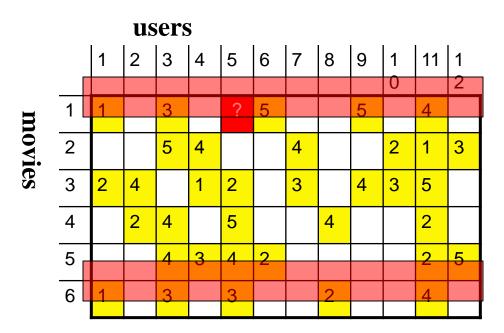


- Example: nearest neighbor methods
 - Which data are "similar"?
- Nearby items? (based on...)

Based on ratings alone?

Find other items that are rated similarly...

Good match on observed ratings



Which data are "similar"?

- Nearby items?
- Nearby users?
 - Based on user features?
 - Based on ratings?

movies

		us	ers	5								
	1	2	3	4	5	6	7	8	9	1	11	1 2
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	თ	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- Some very simple examples
 - All users similar, items not similar?
 - All items similar, users not similar?
 - All users and items are equally similar?

	users												
		1	2	3	4	5	6	7	8	9	1	11	1 2
3	1	1		3		?	5			5		4	
0 4	2			5	4			4			2	1	3
es es	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

Measuring similarity

- Nearest neighbors depends significantly on distance function
 - "Default": Euclidean distance
- Collaborative filtering:
 - Cosine similarity: $\frac{x^{(i)} \cdot x^{(j)}}{\|x^{(i)}\| \|x^{(j)}\|}$ (measures angle between x^i, x^j)
 - Pearson correlation: measure correlation coefficient between x^i, x^j
 - Often perform better in recommender tasks
- Variant: weighted nearest neighbors
 - Average over neighbors is weighted by their similarity
- Note: with ratings, need to deal with missing data!

Nearest-Neighbor methods

movies <u>3</u>

users

<u>6</u> 1 3 3

Neighbor selection: Identify movies similar to 1, rated by user 5

Nearest-Neighbor methods

users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Š	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Compute similarity weights:

$$s_{13}=0.2, s_{16}=0.3$$

Nearest-Neighbor methods

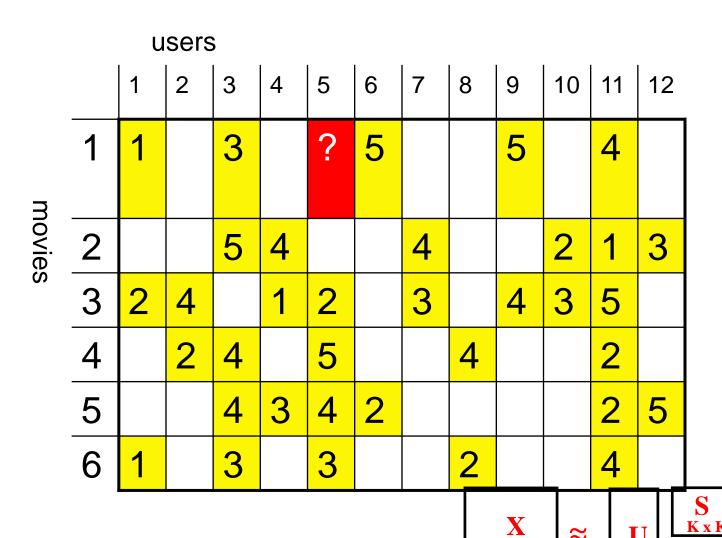
users

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Š	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

(0.2*2+0.3*3)/(0.2+0.3)=2.6

Latent space methods



 $N \times D$

Latent Space Models

Model ratings matrix as "user" and "movie" positions

Infer values from known ratings

USERS

1 3 5 4 5 5 4 2 1 3
2 4 1 2 3 4 3 5
2 4 5 4 2 2 5
1 3 3 3 2 4 4

Extrapolate to unranked

 TOTAL
 .1
 -.4
 .2

 -.5
 .6
 .5

 -.2
 .3
 .5

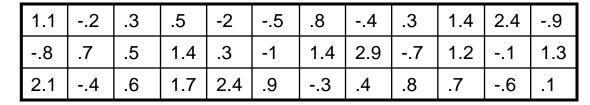
 1.1
 2.1
 .3

 -.7
 2.1
 -2

.7

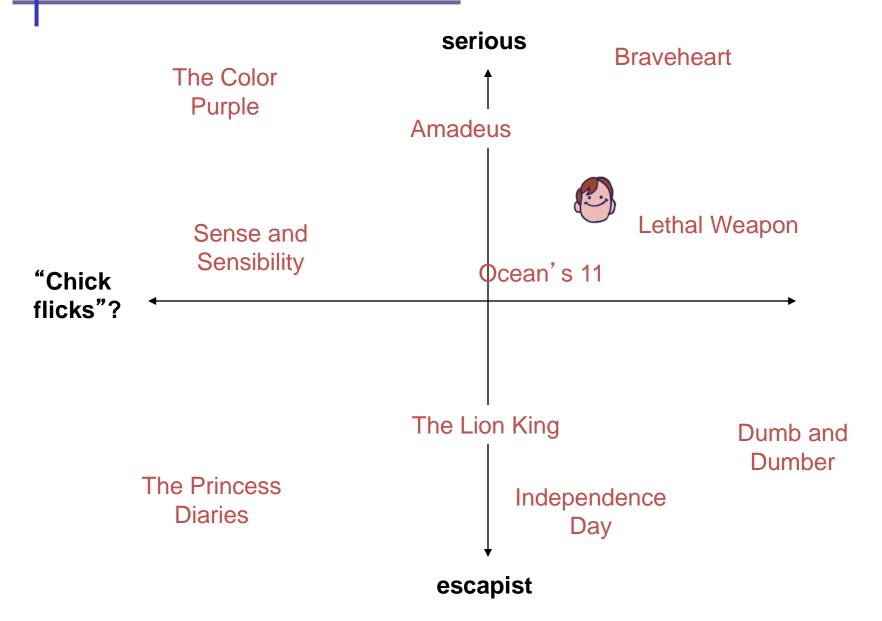
.3

-1



users

Latent Space Models



Some SVD dimensions

See timelydevelopment.com

Dimension 1

Offbeat / Dark-Comedy Mass-Market / 'Beniffer' Movies

Lost in Translation Pearl Harbor
The Royal Tenenbaums Armageddon

Dogville The Wedding Planner

Eternal Sunshine of the Spotless Mind Coyote Ugly

Punch-Drunk Love Miss Congeniality

Dimension 2

Good Twisted

VeggieTales: Bible Heroes: Lions

The Saddest Music in the World

The Best of Friends: Season 3 Wake Up

Felicity: Season 2 I Heart Huckabees
Friends: Season 4 Freddy Got Fingered

Friends: Season 5 House of 1

Dimension 3

What a 10 year old boy would watch What a liberal woman would watch

Dragon Ball Z: Vol. 17: Super Saiyan Fahrenheit 9/11

Battle Athletes Victory: Vol. 4: Spaceward Ho! The Hours

Battle Athletes Victory: Vol. 5: No Looking Back Going Upriver: The Long War of John Kerry

Battle Athletes Victory: Vol. 7: The Last Dance Sex and the City: Season 2 Battle Athletes Victory: Vol. 2: Doubt and Conflic Bowling for Columbine

Latent space models

- Latent representation encodes some "meaning"
- What kind of movie is this? What movies is it similar to?
- Matrix is full of missing data
 - Hard to take SVD directly
 - Typically solve using gradient descent
- $J(U,V) = \sum_{u,m} (X_{mu} \sum_{k} U_{mk} V_{ku})^{2}$
 - Easy algorithm (see Netflix challenge forum)

```
# for user u, movie m, find the kth eigenvector & coefficient by iterating:

predict_um = U[m,:].dot(V[:,u])  # predict: vector-vector product

err = (rating[u,m] - predict_um)  # find error residual

V_ku, U_mk = V[k,u], U[m,k]  # make copies for update

U[m,k] += alpha * err * V_ku  # Update our matrices

V[k,u] += alpha * err * U_mk  # (compare to least-squares gradient)
```

Latent space models

Can be a bit more sophisticated:

$$r_{iu} \approx \mu + b_u + b_i + \sum_k W_{ik} V_{ku}$$

- -"Overall average rating"
- -"User effect" + "Item effect"
- Latent space effects (k indexes latent representation)
- –(Saturating non-linearity?)
- Then, just train some loss, e.g. MSE, with SGD
 - -Each (user, item, rating) is one data point

-E.g.
$$J=\sum_{ij} (X_{ij} - r_{ij})^2$$

Ensembles for recommenders

- Given that we have many possible models:
 - Feature-based regression
 - (Weighted) kNN on items
 - (Weighted) kNN on users
 - Latent space representation

perhaps we should combine them?

- Use an ensemble average, or a stacked ensemble
 - "Stacked": train a weighted combination of model predictions